A Random CSP with Connections to Discrepancy Theory and Randomized Trials

Eren C. Kızıldağ (University of Illinois Urbana-Champaign)

> International Symposium on Information Theory

$$
\text { July 12, } 2024
$$

Overview of Model

Fix $d \in \mathbb{N}$ and $\boldsymbol{c}=\left(c_{1}, \ldots, c_{d}\right) \in \mathbb{R}_{+}^{d}$. Generate iid $X_{1}, \ldots, X_{d} \sim \mathcal{N}\left(0, I_{n}\right)$. Define

$$
\mathcal{F}(\boldsymbol{c})=\left\{\boldsymbol{\sigma} \in\{-1,1\}^{n}:\left|\left\langle\sigma, X_{i}\right\rangle\right| \leq \sqrt{n} 2^{-c_{i} n}, \forall i\right\}
$$

Focus: Non-proportional regime, $n \rightarrow \infty, d=O(1)$. Random CSP

Questions: When is $\mathcal{F}(\boldsymbol{c}) \neq \varnothing$? How does its 'geometry' look like?

Today: Sharp Phase Transition for $\{\mathcal{F}(\boldsymbol{c}) \neq \varnothing\}$. Landscape of $\mathcal{F}(\boldsymbol{c})$

Motivation

Discrepancy Theory

- Given $M \in \mathbb{R}^{d \times n}$, compute/bound its discrepancy $\mathcal{D}(M):=\min _{\boldsymbol{\sigma} \in\{ \pm 1\}^{n}}\|M \sigma\|_{\infty}$.
- Note that $\mathcal{D}(M) \leq B \Longleftrightarrow \exists \boldsymbol{\sigma} \in\{ \pm 1\}^{n}:\left|\left\langle\boldsymbol{\sigma}, X_{i}\right\rangle\right| \leq B, \forall i\left(X_{i}\right.$ are rows of $\left.M\right)$.
- Worst-case \& random M. Existential \& Algorithmic results.

```
[Spencer 85, Karmarkar-Karp-Lueker-Odlyzko 86, Matousek 99, Chazelle 00, Bansal 10, Lovett-Meka 15]
```

Proportional Regime: For $d=\Theta(n)$, and $M \in \mathbb{R}^{d \times n}$ with $\mathcal{N}(0,1)$ entries, whp

$$
\mathcal{D}(M)=f(\alpha) \sqrt{n}\left(1+o_{n}(1)\right), \quad \text { where } \quad \alpha=d / n
$$

for explicit $f(\cdot)$. [Perkins-Xu 21, Abbe-Li-Sly 21]

Motivation: Discrepancy and Random CSPs

Symmetric Binary Perceptron

Fix $\kappa>0$ and consider random $M \in \mathbb{R}^{\alpha n \times n}$. What is the largest $\alpha>0$ for which a

$$
\boldsymbol{\sigma} \in\{ \pm 1\}^{n}:\|M \boldsymbol{\sigma}\|_{\infty} \leq \kappa \sqrt{n}
$$

exists whp? When do efficient search algs work?

- Perceptron: Model for pattern storage. Popular in probability, stat phys, statistics communities [Cover 65, Hopfield 82, Krauth-Mézard 89, Talagrand 99, 10, Franz-Parisi 16, Candès-Sur 20, Perkins-Xu 21, Abbe-Li-Sly 21, 22, Montanari-Zhong-Zhou 21, Sah-Sawhney 23, Nakajima-Sun 23, Barbier-El Alaoui-Krzakala-Zdeborovà 23, Gamarnik-K.-Perkins-Xu 22, 23, K.-Wakhare 23]
- Dual of discrepancy: Fix $\alpha>0$, seek smallest $\kappa>0$ s.t. $\boldsymbol{\sigma} \in\{ \pm 1\}^{n}:\|M \boldsymbol{\sigma}\|_{\infty} \leq \kappa \sqrt{n}$ exists

Motivation: Our Model

$M \in \mathbb{R}^{d \times n}$ with iid rows $X_{1}, \ldots, X_{d} \sim \mathcal{N}\left(0, I_{n}\right), c=\left(c_{1}, \ldots, c_{d}\right) \in \mathbb{R}_{+}^{d}$.

$$
\begin{gathered}
\mathcal{F}(\boldsymbol{c})=\left\{\boldsymbol{\sigma} \in\{-1,1\}^{n}:\left|\left\langle\sigma, X_{i}\right\rangle\right| \leq \sqrt{n} 2^{-c_{i} n}, \forall i\right\} . \\
\sigma \in \mathcal{F}(c) \Longleftrightarrow|M \sigma| \leq\left(\begin{array}{c}
\sqrt{n} 2^{-c_{1} n} \\
\vdots \\
\sqrt{n} 2^{-c_{d} n}
\end{array}\right)
\end{gathered}
$$

- Dual of discrepancy. Non-proportional regime, $d=O_{n}(1)$. Non-uniform constraints
- 2^{-n} scaling: $\min _{\boldsymbol{\sigma} \in\{ \pm 1\}^{n}}\|M \sigma\|_{\infty}=\sqrt{n} 2^{-\Omega(n / d)}=\sqrt{n} 2^{-\Omega(n)}$ for $d=O_{n}(1)$ [Karmarkar-Karp-Lueker-Odlyzko 86, Costello 09, Turner-Meka-Rigollet 20]

Motivation: Randomized Controlled Trials

- Gold standard for clinical trials (drug/vaccine)
- n individuals, covariates $Y_{1}, \ldots, Y_{n} \in \mathbb{R}^{d}$ (columns of $M \in \mathbb{R}^{d \times n}$). $n \gg d$.
- Split into balanced treatment \& control: for thresholds t_{1}, \ldots, t_{d} and features $j \in\{1, \ldots, d\}$

$$
\mathcal{D}_{j}:=\left|\sum_{i: \sigma(i)=+1} Y_{i}(j)-\sum_{i: \sigma(i)=-1} Y_{i}(j)\right| \leq t_{j}, \quad \forall j \in[d]
$$

- Any solution to CSP gives a valid design: $\boldsymbol{\sigma} \in \mathcal{F}(\boldsymbol{c}) \Leftrightarrow D_{j} \leq t_{j}$, for $t_{j}=\sqrt{n} 2^{-c_{j} n}$.

Main Results: A Sharp Phase Transition

For $d \in \mathbb{N}, \boldsymbol{c}=\left(c_{1}, \ldots, c_{d}\right) \in \mathbb{R}_{+}^{d}$ and iid $X_{1}, \ldots, X_{d} \sim \mathcal{N}\left(0, I_{n}\right)$

$$
\mathcal{F}(\boldsymbol{c})=\left\{\boldsymbol{\sigma} \in\{-1,1\}^{n}:\left|\left\langle\sigma, X_{i}\right\rangle\right| \leq \sqrt{n} 2^{-c_{i} n}, \forall i\right\}
$$

Theorem (K., 2024)

$$
\lim _{n \rightarrow \infty} \mathbb{P}[\mathcal{F}(\boldsymbol{c}) \neq \varnothing]= \begin{cases}0, & \text { if }\|\boldsymbol{c}\|_{1}>1 \\ 1, & \text { if }\|\boldsymbol{c}\|_{1}<1\end{cases}
$$

- [Costello 09]: $\min _{\boldsymbol{\sigma} \in\{ \pm 1\}^{n}}\|M \sigma\|_{\infty} \sim \sqrt{n} 2^{-n / d}$ for $M \in \mathbb{R}^{d \times n}, d=O(1) .\left(c_{i} \sim 1 / d\right)$
- Proof based on the first moment method and the second moment method

Proof Sketch: $\|c\|_{1}>1$

Let $T=|\mathcal{F}(\boldsymbol{c})|$. Our proof is based on the moment method.

First Moment Method for $\|c\|_{1}>1$

Observe that $n^{-1 / 2}\left\langle\boldsymbol{\sigma}, X_{i}\right\rangle \sim \mathcal{N}(0,1), 1 \leq i \leq d$ are iid. So,

$$
\mathbb{P}[\boldsymbol{\sigma} \in \mathcal{F}(\boldsymbol{c})]=\prod_{1 \leq i \leq d} \mathbb{P}\left[|\mathcal{N}(0,1)| \leq 2^{-c_{i} n}\right] \sim 2^{-\|\boldsymbol{c}\|_{1} n} .
$$

Using Markov's inequality, we have that for $\|\boldsymbol{c}\|_{1}>1$

$$
\mathbb{P}[T \geq 1] \leq \mathbb{E}[T] \sim 2^{n\left(1-\|\boldsymbol{c}\|_{1}\right)}=2^{-\Theta(n)} .
$$

Hence, $\mathcal{F}(\boldsymbol{c})=\varnothing$ whp for $\|\boldsymbol{c}\|_{1}>1$.

Proof Idea: $\|c\|_{1}<1$

Paley-Zygmund Inequality (Second Moment Method)

Let $T \geq 0$ be a rv and $\theta \in[0,1]$. Then,

$$
\mathbb{P}[T>\theta \mathbb{E}[T]] \geq(1-\theta)^{2} \frac{\mathbb{E}[T]^{2}}{\mathbb{E}\left[T^{2}\right]}
$$

Suppose $T \in \mathbb{Z}$ and $\mathbb{E}\left[T^{2}\right]=(1+o(1)) \mathbb{E}[T]^{2}$. Taking $\theta=0$ yields $T \geq 1$ whp.

$$
\mathbb{E}\left[T^{2}\right]=\underbrace{\sum_{\left(\sigma, \sigma^{\prime}\right) \in \mathcal{T}_{1}} \mathbb{P}\left[\boldsymbol{\sigma}, \boldsymbol{\sigma}^{\prime} \in \mathcal{F}(\boldsymbol{c})\right]}_{:=\Sigma_{1}}+\underbrace{\sum_{\left(\boldsymbol{\sigma}, \boldsymbol{\sigma}^{\prime}\right) \in \mathcal{T}_{2}} \mathbb{P}\left[\boldsymbol{\sigma}, \boldsymbol{\sigma}^{\prime} \in \mathcal{F}(\boldsymbol{c})\right]}_{:=\Sigma_{2}},
$$

where for an arbitrary $\epsilon>0$,

$$
\mathcal{T}_{1}=\left\{\left(\sigma, \sigma^{\prime}\right): \frac{1}{n}\left\langle\sigma, \sigma^{\prime}\right\rangle \in[-\epsilon, \epsilon]\right\} \quad \text { and } \quad \mathcal{T}_{2}=\left\{\left(\sigma, \sigma^{\prime}\right): \frac{1}{n}\left|\left\langle\sigma, \sigma^{\prime}\right\rangle\right|>\epsilon\right\}
$$

Proof Sketch: $\|c\|_{1}<1$

- Show $\Sigma_{2} \leq \mathbb{E}[T]^{2} e^{-\Theta(n)}$. For Σ_{1}, take $\left(\sigma, \sigma^{\prime}\right) \in \mathcal{T}_{1}$. Then,

$$
\left(\frac{1}{\sqrt{n}}\left\langle\boldsymbol{\sigma}, X_{i}\right\rangle, \frac{1}{\sqrt{n}}\left\langle\boldsymbol{\sigma}^{\prime}, X_{i}\right\rangle\right) \sim \mathcal{N}\left(\mathbf{0},\left(\begin{array}{cc}
1 & \rho \\
\rho & 1
\end{array}\right)\right), \quad \text { where } \quad \rho=\frac{1}{n}\left\langle\boldsymbol{\sigma}, \boldsymbol{\sigma}^{\prime}\right\rangle \in[-\epsilon, \epsilon]
$$

- Ignoring absolute constants (not depending on ϵ)

$$
\mathbb{P}\left[\boldsymbol{\sigma}, \boldsymbol{\sigma}^{\prime} \in \mathcal{F}(\boldsymbol{c})\right] \leq\left(1-\epsilon^{2}\right)^{-\frac{d}{2}} 2^{-2\|\boldsymbol{c}\|_{1} n}
$$

- This gives $\Sigma_{1} \leq \mathbb{E}[T]^{2}\left(1-\epsilon^{2}\right)^{-\frac{d}{2}}$. Using $d=O(1)$,

$$
\liminf _{n \rightarrow \infty} \mathbb{P}[T \geq 1] \geq \liminf _{n \rightarrow \infty} \frac{\mathbb{E}[T]^{2}}{\mathbb{E}\left[T^{2}\right]} \geq\left(1-\epsilon^{2}\right)^{\frac{d}{2}}
$$

- Conclude by $\epsilon \rightarrow 0$

Main Results: Solution Space Geometry

$$
\mathcal{F}(\boldsymbol{c})=\left\{\boldsymbol{\sigma} \in\{-1,1\}^{n}:\left|\left\langle\boldsymbol{\sigma}, X_{i}\right\rangle\right| \leq \sqrt{n} 2^{-c_{i} n}, \forall i \in[d]\right\} .
$$

Theorem (K., 2024)
Let $\|\boldsymbol{c}\|_{1}>\frac{1}{2}$. There exists $\beta^{*} \in(0,1)$ such that whp

$$
\min _{\boldsymbol{\sigma}, \boldsymbol{\sigma}^{\prime} \in \mathcal{F}(\boldsymbol{c}), \boldsymbol{\sigma} \neq \boldsymbol{\sigma}^{\prime}} d_{H}\left(\boldsymbol{\sigma}, \boldsymbol{\sigma}^{\prime}\right) \geq \beta^{*} n .
$$

- Solutions are Isolated: If $\|\boldsymbol{c}\|_{1}>\frac{1}{2}$ then any $\left(\boldsymbol{\sigma}, \boldsymbol{\sigma}^{\prime}\right)$ are $\Omega(n)$ apart.
- Proof via first moment method: let T count $\#\left(\sigma, \sigma^{\prime}\right): d_{H}\left(\sigma, \sigma^{\prime}\right) \leq \beta^{*} n$, show $\mathbb{E}[T]=o(1)$.
- Suggests algorithmic hardness
[Achlioptas-Ricci Tersenghi 06, Achlioptas-Coja Oghlan 08, Gamarnik-Sudan 14, 17, Gamarnik-K. 21]

Main Results: Solution Space Geometry

Theorem (K., 2024)

Let $\|\boldsymbol{c}\|_{1}<\frac{1}{2}$ and $\beta \in(0,1)$ be arbitrary. Then,

$$
\mathbb{E}\left[N_{\beta}\right]=e^{\Theta(n)}, \quad \text { where } \quad N_{\beta}=\left|\left(\boldsymbol{\sigma}, \boldsymbol{\sigma}^{\prime}\right): \boldsymbol{\sigma}, \boldsymbol{\sigma}^{\prime} \in \mathcal{F}(\boldsymbol{c}), 1 \leq d_{H}\left(\boldsymbol{\sigma}, \boldsymbol{\sigma}^{\prime}\right) \leq \beta n\right|
$$

- First moment evidence that $\exists\left(\boldsymbol{\sigma}, \boldsymbol{\sigma}^{\prime}\right)$ at arbitrarily small distances for $\|\boldsymbol{c}\|_{1}<\frac{1}{2}$.
- Matching second moment bound: Can we show

$$
\mathbb{E}\left[N_{\beta}^{2}\right]=(1+o(1)) \mathbb{E}\left[N_{\beta}\right]^{2}
$$

and get $N_{\beta} \geq 1$ via Paley-Zygmund?

Independent Instances

$\mathcal{F}(\boldsymbol{c})$ defined before. For $\boldsymbol{c}^{\prime}=\left(c_{1}^{\prime}, \ldots, c_{d}^{\prime}\right) \in \mathbb{R}_{+}^{d}$ and iid $X_{1}^{\prime}, \ldots, X_{d}^{\prime} \sim \mathcal{N}\left(0, I_{n}\right)$, let

$$
\mathcal{F}^{\prime}\left(\boldsymbol{c}^{\prime}\right)=\left\{\boldsymbol{\sigma} \in\{-1,1\}^{n}:\left|\left\langle\boldsymbol{\sigma}, X_{i}^{\prime}\right\rangle\right| \leq \sqrt{n} 2^{-c_{i}^{\prime} n}, \forall i \in[d]\right\} .
$$

When is $\mathcal{F}(\boldsymbol{c}) \cap \mathcal{F}^{\prime}\left(\boldsymbol{c}^{\prime}\right) \neq \varnothing$? If \cap is empty, how far $\mathcal{F}(\boldsymbol{c})$ and $\mathcal{F}^{\prime}\left(\boldsymbol{c}^{\prime}\right)$ are?

Motivation

- RCT $\boldsymbol{\sigma} \in \mathcal{F}(\boldsymbol{c})$. Design a new RCT σ^{\prime} involving a new population \& different constraints \boldsymbol{c}^{\prime}.
- Repeat similar RCT at different regions or many years later: populations do not overlap

Can the same RCT $\boldsymbol{\sigma}$ be used as is? If not, how many changes are needed?

Solutions Spaces of Independent Instances

```
When is }\mathcal{F}(\boldsymbol{c})\cap\mathcal{F}(\mp@subsup{\boldsymbol{c}}{}{\prime})\not=\varnothing\mathrm{ ?
```

Consider $\overline{\boldsymbol{c}}=\left(\boldsymbol{c}, \boldsymbol{c}^{\prime}\right) \in \mathbb{R}_{+}^{2 d}$ and iid $X_{1}, \ldots, X_{d}, X_{1}^{\prime}, \ldots, X_{d}^{\prime} \sim \mathcal{N}\left(0, I_{n}\right)$. We immediately obtain

Corollary (to Theorem 1)

$$
\mathcal{F}(\boldsymbol{c}) \cap \mathcal{F}^{\prime}\left(\boldsymbol{c}^{\prime}\right) \neq \varnothing \text { whp if }\|\boldsymbol{c}\|_{1}+\left\|\boldsymbol{c}^{\prime}\right\|_{1}<1 \text { and } \mathcal{F}(\boldsymbol{c}) \cap \mathcal{F}^{\prime}\left(\boldsymbol{c}^{\prime}\right)=\varnothing \text { whp if }\|\boldsymbol{c}\|_{1}+\left\|\boldsymbol{c}^{\prime}\right\|_{1}>1 .
$$

Suppose $\|\boldsymbol{c}\|_{1}+\left\|\boldsymbol{c}^{\prime}\right\|_{1}>1$. How far $\mathcal{F}(\boldsymbol{c})$ and $\mathcal{F}^{\prime}\left(\boldsymbol{c}^{\prime}\right)$ are?

Main Results: Distance between Independent Instances

Let $\|\boldsymbol{c}\|_{1}+\left\|\boldsymbol{c}^{\prime}\right\|_{1}>1$ and $d\left(\boldsymbol{c}, \boldsymbol{c}^{\prime}\right):=\min _{\boldsymbol{\sigma} \in \mathcal{F}(\boldsymbol{c}), \boldsymbol{\sigma}^{\prime} \in \mathcal{F}^{\prime}\left(\boldsymbol{c}^{\prime}\right)} \frac{d_{H}\left(\boldsymbol{\sigma}, \boldsymbol{\sigma}^{\prime}\right)}{n}$, where d_{H} is Hamming distance.

Theorem (K., 2024)

Suppose $\gamma^{*} \in\left(0, \frac{1}{2}\right)$ is the unique value such that

$$
h\left(\gamma^{*}\right)=\|\boldsymbol{c}\|_{1}+\left\|\boldsymbol{c}^{\prime}\right\|_{1}-1, \quad \text { where } \quad h(p)=-p \log _{2} p-(1-p) \log _{2}(1-p) .
$$

Then, for any $\epsilon>0, \lim _{n \rightarrow \infty}\left[\left|d\left(\boldsymbol{c}, \boldsymbol{c}^{\prime}\right)-\gamma^{*}\right| \leq \epsilon\right]=1$.

- $d\left(\boldsymbol{c}, \boldsymbol{c}^{\prime}\right) \xrightarrow{\text { i.p. }} \gamma^{*}$, which is well-defined as $h:\left[0, \frac{1}{2}\right] \rightarrow[0,1]$ is a bijection.
- $\mathcal{F}(\boldsymbol{c})$ and $\mathcal{F}^{\prime}\left(\boldsymbol{c}^{\prime}\right)$ are $\Omega(n)$ apart.

Future Work

- Universality: Is Gaussianity necessary?
- Second moment calculation for N_{β}
- Algorithmic guarantees: Can we find a $\sigma \in \mathcal{F}(\boldsymbol{c})$ in poly time?
- What are the fundamental limits of algs? Overlap Gap Property
[Gamarnik-Sudan 14, 17, Gamarnik-Jagannath-Wein 20, Gamarnik-K. 21, Gamarnik-K.-Perkins-Xu 22,23]

Thank you!

