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Abstract—We introduce a random constraint satisfaction prob-
lem (CSP) with non-uniform constraints that is closely related
to the average-case discrepancy minimization problem in the
non-proportional regime. Our proposal is particularly motivated
by randomized controlled trials (RCTs) in statistics, involving
different constraints. For the random CSP that we propose, we
establish a sharp phase transition result regarding the existence
of its solutions. We then precisely pinpoint the distance between
the solution spaces corresponding to independent problem in-
stances. In the context of RCTs, this quantifies the amount of
reassignments needed if a similar RCT is to be repeated with
an independent population and/or a potentially different set of
constraints. We lastly study the solution space geometry, and
show that, for certain values of constraints, the solutions are
isolated singletons separated by linear Hamming distance.

I. INTRODUCTION

Given vectors Y1, . . . , Yn ∈ Rd, the vector balancing prob-
lem (VBP) seeks to find a balanced partition of these vectors,
namely a σ ∈ Σn ≜ {−1, 1}n such that ∥

∑
i≤d σ(i)Yi∥∞ is

small (where ∥Y ∥∞ = max1≤j≤d |Y (j)| for Y ∈ Rd).
The VBP is of great practical and theoretical significance. In

statistics, the VBP is closely related to the design of random-
ized controlled trials (RCTs)—often considered as the gold
standard for clinical experiments. Consider an RCT involving
n individuals, each characterized by covariate information
Yi ∈ Rd, 1 ≤ i ≤ n, aimed at understanding the efficacy of
an additive treatment effect (such as a new drug or vaccine).1

These individuals are then split into two groups, i.e. treatment
and control. For accurate inference for the treatment effect, a
good covariate balance is essential. See [1]–[10] for a more
elaborate discussion on RCTs and pointers to literature. Other
applications of VBP include multiprocessor scheduling, design
of VLSI circuits, and cryptography, see e.g. [11]–[13].

In addition to its practical relevance, the VBP is also widely
studied in theoretical computer science, statistical physics, and
discrepancy theory. Its one-dimensional version (d = 1), is
known as the number partitioning problem (NPP); the NPP is
among Karp’s famous list of 21 NP-complete problems [14],
as well as among Garey and Johnson’s six basic NP-complete
problems [15]. The NPP exhibits a certain phase transition,
first conjectured in [16] using elegant yet non-rigorous tools
of statistical mechanics, and subsequently confirmed later
in [17]. Additionally, the NPP is also one of the first models
in computer science for which the local REM conjecture

1Vector Yi carries information regarding individual i, such as their height,
weight, blood sugar, and so on.

from statistical physics is verified, see [18] for the original
conjecture and [19], [20] for its proof.

The VBP is at the heart of combinatorics, in particular
discrepancy theory [21]–[23]. Given M ∈ Rd×n, a canonical
goal in discrepancy theory is to compute or bound its discrep-
ancy D(M) ≜ minσ∈Σn

∥Mσ∥∞. Both worst-case as well
as average-case settings were considered in the discrepancy
literature. In the worst-case setting, a landmark result due to
Spencer, dubbed as “six standard deviations suffice", asserts
that if maxi≤n ∥Yi∥∞ ≤ 1, where Yi ∈ Rd are the columns
of M ∈ Rd×n, then D(M) ≤ 6

√
n [21]. While Spencer’s

guarantee is non-constructive, algorithmic guarantees were
also sought in the discrepancy literature, see e.g. [24]–[27].

Of particular relevance to us is average-case discrepancy
where M ∈ Rd×n is random. In the special case where
the entries of M are i.i.d. standard normal, Mij ∼ N (0, 1),
D(M) = O(

√
n2−n/d) w.h.p. as n → ∞; case d = 1 is due to

Karmarkar, Karp, Lueker, and Odlyzko [28], d = O(1) is due
to Costello [29], and ω(1) ≤ d ≤ o(n) is due to Turner, Meka,
and Rigollet [3]. In the proportional regime where d = Θ(n),
this model is closely related to the symmetric binary per-
ceptron; Perkins and Xu [30] and Abbe, Li, and Sly [31]
established independently that D(M) = (1 + o(1))f(α)

√
n,

where f(·) is an explicit function and α = d/n is held constant
while n → ∞. See next section for more details. These guar-
antees are non-constructive. As for the constructive guarantees,
the best known algorithm for the VBP finds in polynomial
time a σ ∈ Σn with ∥Mσ∥∞ = 2−Ω(log2 n/d) w.h.p. as
long as d = O(

√
log n) [3]; no better algorithm that finds in

polynomial time a σ with ∥Mσ∥∞ = 2−ω(log2 n/d) w.h.p. is
known. This is an instance of a statistical-computational
gap—a striking gap between the existential and the best known
algorithmic guarantee. Using insights from statistical physics,
the limits of efficient algorithms were explored and rigorous
hardness guarantees were obtained in [4], [5], [32]–[34].

In this paper, we propose and rigorously investigate a
random constraint satisfaction problem (CSP) that is closely
related to the VBP. Random CSPs are extensively studied in
the literature through various lenses, ranging from existence of
solutions and solution space geometry to algorithmic aspects;
for further discussion, see [30] and the references therein.
Our particular motivation comes from the design of RCTs
that are subject to non-uniform constraints, as well as from
a connection between discrepancy theory and random CSPs,
see next section for details. The remainder of the paper is



organized as follows. We introduce and motivate the model in
Section II, present our main results in Section III, highlight
some future research directions in Section IV, and finally,
provide complete proofs in Section V.

Notation. Denote by Σn the set {−1, 1}n. Given N ∈ N,
[N ] denotes {1, 2, . . . , N}. For any proposition E, denote its
indicator by 1{E} ∈ {0, 1}. Given a set S, denote by |S|
its cardinality. Given x,y ∈ Rn, let ⟨x,y⟩ ≜

∑
i≤n xiyi,

∥x∥∞ = maxi∈[n] |xi| and ∥x∥1 =
∑

i∈[n] |xi|. Given
σ,σ′ ∈ Σn, dH(σ,σ′) ≜

∑
i 1{σ(i) ̸= σ′(i)}. For any

M ∈ Rd×n, D(M) ≜ minσ∈Σn
∥Mσ∥∞. For any Σ, N (0,Σ)

denotes the centered multivariate normal with covariance Σ.
For n ∈ N, In is the n × n identity matrix. For any r > 0,
logr(·) and expr(·) denote respectively the logarithm and the
exponential functions base r; for r = e, we omit the subscript.
Given p ∈ (0, 1), h(p) ≜ −p log2 p−(1−p) log2(1−p) is the
binary entropy. We omit all floor/ceiling operators. We use
standard asymptotic notation, e.g.Θ(·), O(·), o(·), and ω(·),
where the underlying asymptotics are taken w.r.t.n → ∞.

II. MODEL AND MOTIVATION

In this section, we propose a random CSP with non-uniform
constraints that is closely linked to the VBP.

Definition 1. Fix a c = (c1, . . . , cd) ∈ Rd
+ and let Ξ =

{X1, . . . , Xd} ⊂ Rn be a collection of i.i.d. random vectors
Xi ∼ N (0, In), i ∈ [d]. Define

F
(
Ξ, c

)
=

⋂
i≤d

{
σ ∈ Σn : |⟨σ, Xi⟩| ≤

√
n2−cin

}
. (1)

Several remarks are in order. First, F(Ξ, c) is the random set
consisting of all σ ∈ Σn that satisfy |⟨σ, Xi⟩| ≤

√
n2−cin for

all i ∈ [d]. For this reason, we refer to F(Ξ, c) as the solution
space (corresponding to the underlying CSP). Next, note that
the constraints are indeed non-uniform as ci are potentially
distinct. Throughout, we assume ci < 1 for all i ∈ [d].
As we mentioned earlier, minσ∈Σn |⟨σ, Xi⟩| = O(

√
n2−n)

w.h.p. [28], so F
(
Ξ, c

)
= ∅ w.h.p. if ci > 1 for some i. Our

particular focus is on F(Ξ, c) when n → ∞ while the number
d of constraints remains constant in n, d = O(1). We refer to
this as the non-proportional regime; it is in contrast with the
proportional regime where d scales linearly with n, d = Θ(n).

We now provide some motivations for our model.
a) Design of RCTs: Let M ∈ Rd×n have rows

X1, . . . , Xd ∈ Rn and columns Y1, . . . , Yn ∈ Rd. In the
context of RCTs, n individuals are participating in a study
that aims to assess the efficacy of an additive treatment effect
(such as a new drug or vaccine). In particular, Yi is the vector
of covariates associated with individual i ∈ [n], and the regime
n ≫ d is relevant as the number of participants is likely
larger than that of covariates. Individuals i with σ(i) = 1 are
assigned to the treatment group which gets the drug/vaccine,
and those with σ(i) = −1 to the control group which gets
a placebo; the responses are evaluated. Now, fix a covariate
j ∈ [d] and consider the set {Yi(j) : i ∈ [n]}, namely the
values that covariate j takes across the population of n people.

As mentioned earlier, a good covariate balance is essential for
accurate inference, the main goal of the RCT. One way to inter-
pret the covariate balance is that for any j ∈ [d], the difference
(regarding covariate j) between the treatment and the control
group does not exceed a fixed threshold: for some predeter-
mined tj , Dj ≜ |

∑
i:σ(i)=1 Yi(j) −

∑
i:σ(i)=−1 Yi(j)| < tj

for all j ∈ [d]. Naturally, the values tj need not be equal
since the range of covariate values need not be the same;
therefore designs with such non-uniform constraints are of
potential practical interest. Notice now that if σ ∈ F(Ξ, c),
then Dj ≤ tj for all j ∈ [d], where tj =

√
n2−cjn. That is,

any σ ∈ F(Ξ, c) is a valid design. Hence, to design the RCT,
it suffices to solve the random CSP arising in Definition 1.
While a more compelling model would relax the distributional
assumptions on Ξ and focus on ti’s that are not necessarily
at an exponentially small scale, our model, incorporating non-
uniform constraints into the design, should be viewed as a
preliminary attempt towards studying such more sophisticated
random designs. More complicated designs where Yi have
mixed (integer and continuous) entries or where Xi are not
identically distributed are left for future work.

b) Connections between Discrepancy and Random CSPs:
We explicate the following connection between discrepancy
theory and random CSPs. Consider a random M ∈ Rd×n in
the proportional regime d = Θ(n), where α ≜ d/n is fixed
while n → ∞. Given κ > 0, the symmetric binary perceptron
(SBP) model studies the set of solutions to ∥Mσ∥∞ ≤
κ
√
n,σ ∈ Σn [35]. The SBP is a toy neural network storing

random patterns. Two fundamental questions about this model
are: (a) what is the largest α for which such a σ exists,
and (b) when do efficient search algorithms work? Note that
this is the inverse of the discrepancy perspective, where one
fixes α > 0 first and seeks the smallest κ > 0 (i.e., the
right hand side) for which a σ with ∥Mσ∥∞ ≤ κ

√
n exists.

Moreover, the best known algorithm for the SBP also comes
from the discrepancy literature [36], further highlighting the
connection between the two. The SBP received significant
attention and was studied extensively, see e.g. [30]–[33], [37],
[38]. The model we introduce in Definition 1 is similar, being
the dual of the discrepancy view. We ask: for which fixed
c ∈ Rd

+ (i.e., the right hand side) do solutions satisfying (1)
exist? On the other hand, our model involves non-uniform
constraints, and concerns the non-proportional regime where
the number d of constraints remains constant in n, d = O(1),
whereas the SBP studies regime d growing linearly with n,
d = Θ(n). We highlight that the exponential scaling in (1) is
due to the fact that for M ∈ Rd×n with random i.i.d. entries
and d = O(1), the discrepancy of M is also exponentially
small, D(M) =

√
n2−Ω(n) w.h.p. [3], [28], [29]; this is in

contrast with the SBP where the
√
n scaling is needed since

D(M) = O(
√
n) w.h.p. for d = Θ(n), see [30], [31].

III. MAIN RESULTS

A. Existence of Solutions: A Sharp Phase Transition

Given c ∈ Rd
+, the first natural question is: when is F(Ξ, c)

per (1) non-empty, ideally w.h.p. as n → ∞? (The probability



is taken w.r.t. Ξ.) Our first main result answers this question.

Theorem 1. Fix d ∈ N and a c = (c1, . . . , cd) ∈ Rd
+. Then,

lim
n→∞

P
[
F(Ξ, c) ̸= ∅

]
=

{
0, if ∥c∥1 > 1

1, if ∥c∥1 < 1
.

That is, the event
{
F(Ξ, c) ̸= ∅

}
undergoes a sharp phase

transition as ∥c∥1 varies: as n → ∞, F(Ξ, c) is w.h.p. non-
empty (resp. empty) if ∥c∥1 < 1 (resp. ∥c∥1 > 1). Note that
this is in agreement with Costello [29] who establishes that
minσ∈Σn

∥Mσ∥∞ is of order
√
n2−n/d w.h.p. if M ∈ Rd×n

and d = O(1). In some sense, Costello’s result is closely
related to a special case of Theorem 1 with ci ∼ 1/d,∀i ∈ [d].

Proof Idea The proof of Theorem 1 is based on the
moment method [39]. Specifically, let T be the random variable
counting the number of elements in F(Ξ, c): T = |F(Ξ, c)|.
When ∥c∥1 > 1, we show that E[T ] = exp(−Θ(n)). Markov’s
inequality then gives P[T ≥ 1] ≤ exp(−Θ(n)), yielding one
part of Theorem 1. This is known as the first moment method.
The case ∥c∥1 < 1, on the other hand, is more delicate; it
requires estimating both E[T ] as well as E[T 2] and applying
the Paley-Zygmund Inequality [39]: P[T > 0] ≥ E[T ]2/E[T 2].
Estimating E[T 2] is somewhat involved—it requires studying
a sum running over all pairs (σ,σ′) ∈ Σn×Σn. Our argument
shows that this sum is essentially dominated by pairs that are
nearly orthogonal, i.e. n−1⟨σ,σ′⟩ ∈ [−ϵ, ϵ] for ϵ small. See
Section V-B for the complete proof.

B. Independent Instances: Distance Between Solution Spaces

Our next focus is on solution spaces generated by indepen-
dent instances. To set the stage, let Ξ = {X1, . . . , Xd} ⊂ Rn

be as in Definition 1 and Ξ′ be an i.i.d. copy of Ξ. Fix
c ∈ Rd

+ and c′ ∈ Rd
+, not necessarily equal with ∥c∥1 < 1

and ∥c′∥1 < 1, and consider F(Ξ, c) and F(Ξ′, c′) per (1).
Two natural random geometrical questions are: (a) when is
F(Ξ, c)∩F(Ξ′, c′) non-empty, and (b) when the intersection
is empty, how far apart are the sets F(Ξ, c) and F(Ξ′, c′)?
Before presenting our main result, we motivate these questions
in the context of RCTs.

Motivation from RCTs Suppose we have a design σ ∈
F(Ξ, c) involving a population Ξ and constraints (prescribed
by) c ∈ Rd

+.2 Suppose that we are to design a new RCT
σ′ involving a new population Ξ′ and potentially different
constraints c′. One particular example would be repeating a
similar RCT either at a different region (so the populations do
not overlap) or many years later (where one might need new
participants) with potentially different constraints. In this case,
it is plausible to assume Ξ′ is an i.i.d. copy of Ξ; the questions
above simply ask whether one can use the existing design σ
as is, and if not, how many changes (in the coordinates of σ)
are needed.3

2Recall that for M , whose rows are Xi, the elements of Ξ, its columns
represent covariates corresponding to different individuals.

3We do not inquire on how to constructively find such a design, an
interesting question left for future work.

Having motivated the questions raised above, we define

d
(
c, c′

)
= min

σ∈F(Ξ,c),σ′∈F(Ξ′,c′)

dH(σ,σ′)

n
(2)

to be the normalized distance between F(Ξ, c) and F(Ξ′, c′).
Note that d(c, c′) is random and d(c, c′) ∈ [0, 1] almost surely
for all c, c′. A direct corollary to Theorem 1 is as follows.

Corollary 1. F(Ξ, c)∩F(Ξ′, c′) ̸= ∅ w.h.p. if ∥c∥1+∥c′∥1 <
1 and F(Ξ, c) ∩ F(Ξ′, c′) = ∅ w.h.p. if ∥c∥1 + ∥c′∥1 > 1.

In particular, d(c, c′) = 0 w.h.p. if ∥c∥1 + ∥c′∥1 < 1.
Corollary 1 follows immediately by applying Theorem 1
to the set F(Ξ̄, c̄) per (1) with Ξ̄ = Ξ ∪ Ξ′ and c̄ =
(c1, . . . , cd, c

′
1, . . . , c

′
d) ∈ R2d

+ , and noticing that F(Ξ̄, c̄) =
F(Ξ, c) ∩ F(Ξ′, c′). This answers the first question, namely
when the intersection is non-empty.

The second question, regarding the distance between
F(Ξ, c) and F(Ξ′, c′) when their intersection is empty, turns
out more delicate, and is the subject of our next result.

Theorem 2. Let c, c′ ∈ Rd
+ with the property that

max{∥c∥1, ∥c′∥1} < 1 and ∥c∥1 + ∥c′∥1 > 1. Define by
γ∗ ∈ (0, 1

2 ) the unique value

h(γ∗) = ∥c∥1 + ∥c′∥1 − 1,

where h(p) = −p log2 p − (1 − p) log2(1 − p), p ∈ [0, 1], is
the binary entropy function. Then, for any ϵ > 0,

lim
n→∞

P
[∣∣d(c, c′)− γ∗∣∣ ≤ ϵ

]
= 1.

That is, d(c, c′) converges in probability to γ∗, asserting
that the distance between F(Ξ, c) and F(Ξ′, c′) is (w.h.p.) of
order Ω(n). Note that γ∗ is well-defined as h : [0, 1

2 ] → [0, 1]
is a bijection (a well-known fact, see, e.g., [40]).

Proof Idea The proof of Theorem 2 is based on introducing
certain auxiliary random variables and applying the moment
method. The details of the second moment method, on the
other hand, are quite involved; we need to study a sum
running over all quadruples of form (σ1,σ

′
1,σ2,σ

′
2) where

σ1,σ2 ∈ F(Ξ, c), σ′
1,σ

′
2 ∈ F(Ξ′, c′) and dH(σi,σ

′
i) ∼ γ∗,

and understand their pairwise overlaps in order to study a
certain covariance matrix arising in the probability calculation.
Our argument shows that the second moment is dominated
by nearly orthogonal quadruples, i.e. those with 1

n ⟨σ1,σ2⟩ ∈
[−δ, δ] and 1

n ⟨σ
′
1,σ

′
2⟩ ∈ [−δ, δ], where δ > 0 is small. For

full proof, see Section V-C.

C. Solution Space Geometry: Distance Between Solutions
Our last focus is on the geometry of the solution space

F(Ξ, c) per (1). By inspecting (1), we observe that F(Ξ, c)
shrinks as ∥c∥1 gets larger. Intuitively, this suggests that
solutions become ‘more isolated’ as ∥c∥1 grows. Our next
result confirms this.

Theorem 3. Let F(Ξ, c) be as in (1).
(a) Let ∥c∥1 > 1

2 . Then, there exists a β∗ ≜ β∗(c) ∈ (0, 1)
such that w.h.p. as n → ∞,

min
σ,σ′∈F(Ξ,c),σ ̸=σ′

dH(σ,σ′) ≥ β∗n.



(b) Let ∥c∥1 < 1
2 and β ∈ (0, 1) be arbitrary. Then, E[Nβ ] =

eΘ(n) where

Nβ ≜
∣∣{(σ,σ′) ∈ F(Ξ, c)2 : 1 ≤ dH(σ,σ′) ≤ βn

}∣∣.
Note that Part (a) of Theorem 3 asserts that if ∥c∥1 >

1
2 , then the solutions are isolated: w.h.p. any pair of solutions
(σ,σ′) are Ω(n) apart. Part (b), on the other hand, gives a
first moment ‘evidence’ towards the hypothesis that for small
∥c∥1, there exist solution pairs at arbitrarily small distances.
Proving this amounts to showing Nβ ≥ 1 w.h.p., for which
one needs to study E[N2

β ]. The second moment calculation, on
the other hand, appears even more involved than Theorem 2;
we leave it for future work. The proof of Theorem 3 is based
on the first moment method and provided in Section V-D.

IV. FUTURE WORK

We close by outlining several future directions. It would be
very interesting to show that for ∥c∥1 < 1

2 and any β ∈ (0, 1),
there exist (w.h.p.) solution pairs at distance βn, which would
strengthen Theorem 3(b). This can potentially be done through
a second moment calculation. Another interesting question is
whether the solution space exhibits the shattering property,
see e.g. [41], [42]. While Theorem 1 yields the existence of
solutions, our proof technique—the second moment method—
is non-constructive. Are there polynomial-time algorithms to
find σ ∈ F(Ξ, c), and if so, what are their fundamental
limits? These questions can be addressed using the Overlap
Gap Property framework [43]. Lastly, it would be interesting to
analyze a version of SBP with similar non-uniform constraints.

V. PROOFS

We provide below the complete proofs of all of our results.

A. Auxiliary Results

We collect several useful auxilary results here. Our first
result regards certain Gaussian probabilities.

Lemma 1. (a) Let Z ∼ N (0, 1) and z = on(1). Then,

P[|Z| ≤ z] =

√
2

π
z(1 + on(1)).

(b) Let Z,Zρ ∼ N (0, 1) with E[ZZρ] = ρ ∈ [0, 1). Suppose
z1, z2 are such that (z21 + z22)/

√
1− ρ2 = on(1). Then,

P
[
|Z| ≤ z1, |Zρ| ≤ z2

]
=

2z1z2

π
√
1− ρ2

(
1 + on(1)

)
.

Lemma 1 is reproduced from [5, Lemma 5.6], see the proof
therein. Our next auxiliary result regards binomial coefficients.

Lemma 2. (a) Let ρ ∈ (0, 1). Then,
(
n
ρn

)
= exp2

(
nh(ρ) +

o(n)
)
, where h(ρ) = −ρ log2 ρ− (1− ρ) log2(1− ρ).

(b) Fix α ≤ 1
2 . Then, for all n,∑

i≤αn

(
n

i

)
≤ 2nh(α).

See [44, Section 17.5] for the proof of Lemma 2(a) and [45,
Theorem 3.1] for Lemma 2(b).

B. Proof of Theorem 1 (Compressed)

Fix a c ∈ Rd
+ and let F(Ξ, c) be as in (1). Define

T ≜
∣∣F(Ξ, c)

∣∣ = ∑
σ∈Σn

1
{
σ ∈ F(Ξ, c)

}
. (3)

Note that Zi = n− 1
2 ⟨σ, Xi⟩ ∼ N (0, 1), i ∈ [d] are i.i.d. So,

E[T ] = 2nP
[
σ ∈ F(Ξ, c)

]
= 2n

∏
1≤i≤d

P
[
|Zi| ≤ 2−cin

]
. (4)

Invoking Lemma 1(a), we obtain

P
[
|Zi| ≤ 2−cin

]
=

√
2

π
2−cin(1 + on(1)). (5)

Combining (4) and (5), we arrive at

E[T ] =
(
2

π

) d
2

2n(1−∥c∥1)
(
1 + on(1)

)
. (6)

Suppose ∥c∥1 > 1. We then have P[T ≥ 1] ≤ E[T ] ≤
exp

(
−Θ(n)

)
, using Markov’s inequality, (6), and the fact that

d = O(1). With this, we obtain that F(Ξ, c) = ∅ w.h.p.
In the remainder of the proof, we assume ∥c∥1 < 1. Note

first that E[T ] = exp
(
Θ(n)

)
per (6). Fix ϵ > 0 and define

T1 ≜

{
(σ,σ′) :

dH(σ,σ′)

n
/∈
[
1− ϵ

2
,
1 + ϵ

2

]
∪ {0, 1}

}
(7)

T2 ≜

{
(σ,σ′) :

dH(σ,σ′)

n
∈
[
1− ϵ

2
,
1 + ϵ

2

]}
. (8)

Namely, any (σ,σ′) ∈ T2 is nearly orthogonal. We next
estimate E[T 2]. Using (3) and the linearity of expectation,

E[T 2] =
∑

(σ,σ′)∈Σn×Σn

P
[
σ ∈ F(Ξ, c),σ′ ∈ F(Ξ, c)

]
= 2

∑
σ∈Σn

P
[
σ ∈ F(Ξ, c)

]
+

∑
(σ,σ′)∈T1

P
[
σ,σ′ ∈ F(Ξ, c)

]
(9)

+
∑

(σ,σ′)∈T2

P
[
σ,σ′ ∈ F(Ξ, c)

]
. (10)

We next control the terms in (9) and (10). To that end, recall
Zi = n− 1

2 ⟨σ, Xi⟩ and define Z ′
i ≜ n− 1

2 ⟨σ′, Xi⟩ ∼ N (0, 1).
Terms in (9): We show these terms are negligible. First,∑
σ∈Σn

P
[
σ ∈ F(Ξ, c)

]
= E[T ]. As for the second term, fix

(σ,σ′) ∈ T1, and notice that σ ̸= ±σ′. So, dH(σ,σ′) ∈
[1, n − 1] and 1

n |⟨σ,σ
′⟩| ≤ n−2

n . We estimate P
[
σ,σ′ ∈

F(Ξ, c)
]
. To that end, observe that (Zi, Z

′
i) is a bivariate

normal with parameter ρ where |ρ| = E[ZiZ
′
i] =

1
n |⟨σ,σ

′⟩| ≤
1− 2

n . In particular, 1− ρ2 ≥ 2
n

(
2− 2

n

)
= Ω( 1n ). So,

P
[
σ,σ′ ∈ F(Ξ, c)

]
=

∏
1≤i≤d

P
[
|Zi| ≤ 2−cin, |Z ′

i| ≤ 2−cin
]

(11)

≤
(
2

π

)d

2−2∥c∥1nO
(
nd/2

)
(12)



where (11) uses independence of Xi arising in F(Ξ, c)
and (12) uses the bivariate normal bound in Lemma 1(b).
Next, we estimate |T1| in (7). We have

|T1| ≤ 2 ·2n
∑

0≤k≤n(1−ϵ)
2

(
n

k

)
≤ 2 ·exp2

(
n+ nh

(
1− ϵ

2

))
,

(13)
where we used Lemma 2(b). Combining (12) and (13), we
thus arrive at∑

(σ,σ′)∈T1

P
[
σ,σ′ ∈ F(Ξ, c)

]
≤

(
2

π

)d

O(nd/2) exp2

(
n+ nh

(
1− ϵ

2

)
− 2n∥c∥1

)
≤ E[T ]2O(nd/2) exp2

(
−n+ nh

(
1− ϵ

2

))
(14)

= E[T ]2 exp
(
−Θ(n)

)
, (15)

where (14) uses E[T ] per (6), and (15) uses the fact d = O(1)
and h

(
1−ϵ
2

)
< 1.

Term in (10): We now show E[T 2] is dominated by the sum
in (10). Note first that |T2| ≤ |Σn|2 = 22n, as T2 ⊂ Σn ×Σn.
Next, fix a (σ,σ′) ∈ T2 and observe that 1

n ⟨σ,σ
′⟩ ∈ [−ϵ, ϵ].

Fix now an i ∈ [d] and consider the bivariate normal (Zi, Z
′
i)

with parameter ρ = E[ZiZ
′
i] =

1
n ⟨σ,σ

′⟩ ∈ [−ϵ, ϵ]. We have

P
[
|Zi| ≤ 2−cin, |Z ′

i| ≤ 2−cin
]
≤ 2

π
√
1− ϵ2

2−2cin, (16)

using the anti-concentration bound per Lemma 1. Using (16)
and the independence of Xi, i ∈ [d],

max
(σ,σ′)∈T2

P
[
σ,σ′ ∈ F(Ξ, c)

]
≤

(
2

π

)d

(1− ϵ2)−
d
2 2−2∥c∥1n.

(17)
Recalling |T2| ≤ 22n, we thus upper bound (10) by∑

(σ,σ′)∈T2

P
[
σ,σ′ ∈ F(Ξ, c)

]
≤

(
2

π

)d

22n(1−∥c∥1)(1− ϵ2)−
d
2 ≤ E[T ]2(1− ϵ2)−

d
2 , (18)

where (18) follows by combining (6) and (17).
Second Moment Method. We apply Paley-Zygmund In-

equality: for T , a non-negative integer-valued random variable

P[T ≥ 1] ≥ E[T ]2/E[T 2]. (19)

For a simple proof, see e.g. [39]. Combining (9), (10), (15)
and (18), we arrive at

E[T 2] ≤ E[T ] + E[T ]22−Θ(n) + E[T ]2(1− ϵ2)−
d
2 . (20)

Observing that E[T ] in (6) is of order 2Θ(n) for ∥c∥1 < 1,

lim inf
n→∞

P[T ≥ 1] ≥ lim inf
n→∞

1

E[T ]−1 + 2−Θ(n) + (1− ϵ2)−
d
2

(21)

= (1− ϵ2)
d
2 , (22)

where (21) follows by combining (19) and (20) and recalling
d = O(1). Since ϵ > 0 is arbitrary, we obtain by sending ϵ →
0 in (22) and using P[T ≥ 1] ≤ 1 that limn→∞ P[T ≥ 1] = 1
for ∥c∥1 < 1, completing the proof of Theorem 1.

C. Proof of Theorem 2

We prove Theorem 2 below. Clearly, it suffices to establish
the result for ϵ > 0 small enough. Fix c, c′ ∈ Rd

+ with ∥c∥1+
∥c′∥1 > 1 and let γ∗ ∈ (0, 1

2 ) be the unique value such that

1 + h(γ∗) = ∥c∥1 + ∥c′∥1. (23)

Fix ϵ > 0 small and introduce the random variable Uγ∗,ϵ:

Uγ∗,ϵ =
∣∣{(σ,σ′) ∈ F(Ξ, c)×F(Ξ′, c′) :

dH(σ,σ′)

n
≤ γ∗−ϵ

}∣∣.
We first show E[Uγ∗,ϵ] = exp(−Θ(n)). Note that

E[Uγ∗,ϵ] =
∑

σ,σ′∈Σn

dH(σ,σ′)≤γ∗−ϵ

P
[
σ ∈ F(Ξ, c)

]
P
[
σ ∈ F(Ξ, c′)

]
(24)∑

0≤k≤n(γ∗−ϵ)

2n
(
n

k

)
P
[
σ ∈ F(Ξ, c)

]
P
[
σ ∈ F(Ξ, c′)

]
(25)

≤ exp2
(
n
(
1 + h(γ∗ − ϵ)− ∥c∥1 − ∥c′∥1

)
+O(1)

)
(26)

= exp
(
−Θ(n)

)
, (27)

where (24) uses independence of Ξ and Ξ′, (25) uses a simple
counting argument, (26) is obtained via Lemma 2(b) and
reasoning similar to (5), and finally, (27) follows from (23)
and the fact h(γ∗ − ϵ) < h(γ∗) as γ∗ < 1

2 .
Next, P[Uγ∗,ϵ ≥ 1] ≤ E[Uγ∗,ϵ] → 0 by Markov’s inequality.

Noting that {Uγ∗,ϵ = 0} = {d(σ,σ′) ≥ γ∗− ϵ}, we conclude

lim
n→∞

P
[
d(σ,σ′) ≥ γ∗ − ϵ

]
= 1. (28)

To show d(σ,σ′) ≤ γ∗ + ϵ w.h.p., introduce Uγ∗,ϵ:∣∣{(σ,σ′) ∈ F(Ξ, c)×F(Ξ′, c′) :
dH(σ,σ′)

n
= γ∗ + ϵ

}∣∣,
(29)

where ϵ is small enough, such that γ∗ < γ∗ + ϵ < 1
2 .

Proposition 1. limn→∞
E[Uγ∗,ϵ]

2

E[U2
γ∗,ϵ]

= 1.

The proof Proposition 1 is involved, see Section V-E.
Observe that {Uγ∗,ϵ ≥ 1} ⊆ {d(c, c′) ≤ γ∗ + ϵ}, hence

lim inf
n→∞

P
[
d(c, c′) ≤ γ∗ + ϵ

]
≥ lim inf

n→∞
P
[
Uγ∗,ϵ ≥ 1

]
= 1,

(30)

where we used Paley-Zygmund Inequality (19) and Proposi-
tion 1. Combining (30) with (28), we establish Theorem 2.



D. Proof of Theorem 3

We only prove Part (a); Part (b) follows similarly. The
proof is based on the first moment method. Let ∥c∥1 > 1

2
and β∗ ∈ (0, 1

2 ) be any value such that 1 + h(β∗) < 2∥c∥1.
For Nβ∗ as in Theorem 3, we show E[Nβ∗ ] = exp(−Θ(n)).
To that end, fix any (σ,σ′) with 1 ≤ dH(σ,σ′) ≤ β∗n.
Note that 1

n |⟨σ,σ
′⟩| ≤ 1 − 2

n as σ ̸= ±σ′. Setting
Zi = n− 1

2 ⟨σ, Xi⟩ and Z ′
i = n− 1

2 ⟨σ′, Xi⟩, we observe that
Zi ∼ N (0, 1) i.i.d., Z ′

i ∼ N (0, 1) also i.i.d., and for any
i ∈ [d], (Zi, Z

′
i) is a bivariate normal with density upper

bounded by 1/(2π
√
1− (⟨σ,σ′⟩/n)2) which is O(n). Thus,

P
[
σ,σ′ ∈ F(Ξ, c)

]
=

∏
1≤i≤d

P
[
|Zi| ≤ 2−cin, |Z ′

i| ≤ 2−cin
]

≤ exp
(
−2∥c∥1n+O(log n)

)
(31)

As (31) is valid for all (σ,σ′) with 1 ≤ dH(σ,σ′) ≤ β∗n,

E[Nβ∗ ] =
∑

σ,σ′∈Σn:1≤dH(σ,σ′)≤β∗n

P
[
σ,σ′ ∈ F(Ξ, c)

]
≤ 2n

∑
1≤k≤β∗n

(
n

k

)
exp

(
−2∥c∥1n+O(log n)

)
≤ exp2

(
n+ nh(β∗)− 2n∥c∥1 +O(log n)

)
= exp(−Θ(n))

(32)

where (32) uses Lemma 2(b). Thus Nβ∗ = 0 w.h.p. by
Markov’s inequality, which immediately yields that for ∥c∥1 >
1
2 , w.h.p. minσ,σ′∈F(Ξ,c),σ ̸=σ′ dH(σ,σ′) ≥ β∗n.

E. Proof of Proposition 1

Theorem 2 is based on Proposition 1, which we prove now.
In what follows, suppose that ϵ > 0 is small, so that γ∗+ϵ < 1

2 .
In particular,

h(γ∗ + ϵ) > h(γ∗),

and therefore

h(γ∗ + ϵ) + 1− ∥c∥1 − ∥c′∥1 > 1. (33)

Estimating E[Uγ∗,ϵ]. Fix σ ∈ Σn. Set Zi ≜ n− 1
2 ⟨σ, Xi⟩ ∼

N (0, 1), i ∈ [d] which are i.i.d., and observe that

P
[
σ ∈ F(Ξ, c)

]
=

∏
1≤i≤d

P
[
|Zi| ≤ 2−cin

]
(34)

=
∏

1≤i≤d

(
2√
2π

2−cin(1 + on(1))

)
(35)

=

(
2

π

)d/2

2−∥c∥1n
(
1 + on(1)

)
, (36)

where (34) uses independence of Xi, (35) uses Lemma 1(a),
and (36) uses the fact d = O(1) as n → ∞. Hence,

E
[
Uγ∗,ϵ

]
=

∑
σ,σ′∈Σn

dH(σ,σ′)=n(γ∗+ϵ)

P
[
σ ∈ F(Ξ, c),σ′ ∈ F(Ξ′, c′)

]
=

∑
σ,σ′∈Σn

dH(σ,σ′)=n(γ∗+ϵ)

P
[
σ ∈ F(Ξ, c)

]
P
[
σ′ ∈ F(Ξ′, c′)

]
(37)

= 2n
(

n

n(γ∗ + ϵ)

)(
2

π

)d

e−n(∥c∥1+∥c′∥1)(1 + on(1)),

(38)

where (37) uses the independence of Ξ and Ξ′ and (38)
uses (36). We also record the following esimate: recalling(

n

n(γ∗ + ϵ)

)
= exp2

(
h(γ∗ + ϵ) + o(n)

)
per Lemma 2(a), we have by using (33) that

E[Uγ∗,ϵ] = eΘ(n). (39)

Estimating E
[
U

2

γ∗,ϵ

]
Estimating the second moment is

more complicated. We first show the following lemma.

Lemma 3. Let O ∈ (−1, 1). Then,

sup
σ1,σ2∈Σn:

1
n ⟨σ1,σ2⟩=O

P
[
σ1,σ2 ∈ F(Ξ, c)

]
≤

(
2

π

)d

(1−O2)−
d
2 2−2∥c∥1n(1 + on(1)).

Proof of Lemma 3. Let Zi = n− 1
2 ⟨σ1, Xi⟩ and Ci =

n− 1
2 ⟨σ2, Xi⟩. Note that Zi ∼ N (0, 1) i.i.d., Ci ∼ N (0, 1)

also i.i.d., and (Zi, Ci) is a bivariate normal with parameter
O for every i ∈ [d]. Hence,

P
[
σ1,σ2 ∈ F(Ξ, c)

]
=

∏
1≤i≤d

P
[
|Zi| ≤ 2−cin, |Ci| ≤ 2−cin

]
(40)

=
∏

1≤i≤d

(
2 · 2−2cin

π
√
1−O2

(1 + on(1))

)
(41)

=

(
2

π

)d

(1−O2)−
d
2 2−2∥c∥1n(1 + on(1)),

(42)

where (40) uses independence of Xi, i ∈ [d] and (41) uses
Lemma 1(b) for the bivariate normal (Zi, Ci) with z1 = z2 =
2−cin and (42) uses the fact d = O(1).

Having shown Lemma 3, we now estimate the second
moment. Notice first that

E
[
U

2

γ∗,ϵ

]
=

∑
σ1,σ

′
1,σ2,σ

′
2∈Σn

dH(σ1,σ
′
1)=n(γ∗+ϵ)

dH(σ2,σ
′
2)=n(γ∗+ϵ)

P
[
σ1,σ2 ∈ F(Ξ, c),σ′

1,σ
′
2 ∈ F(Ξ′, c′)

]
.

(43)



Let Q be a shorthand for the quadruple (σ1,σ
′
1,σ2,σ

′
2) and

S ≜
{
Q : dH(σ1,σ

′
1) = dH(σ2,σ

′
2) = n(γ∗ + ϵ)

}
⊂ Σ4

n.

Fix δ > 0 small and introduce the sets

J (δ) =

[
n(1− δ)

2
,
n(1 + δ)

2

]
(44)

J ′(δ) = [1, n− 1] \
[
n(1− δ)

2
,
n(1 + δ)

2

]
. (45)

Partitioning Quadruples. Define the sets of quadruples

T0 ≜
{
Q ∈ S : (σ1,σ

′
1) = (±σ2,±σ′

2)
}

(46)

T1 ≜
{
Q ∈ S : σ1 = ±σ2,σ

′
1 ̸= ±σ′

2

}
(47)

T2 ≜
{
Q ∈ S : σ′

1 = ±σ′
2,σ1 ̸= ±σ2

}
. (48)

Let
S ′ ≜ S \

(
T0 ∪ T1 ∪ T2

)
.

Note that if Q ∈ S ′ then σ1 ̸= ±σ2 and σ′
1 ̸= ±σ′

2. Next,
define

T3 ≜
{
Q ∈ S ′ : dH(σ1,σ2) ∈ J ′(δ) or dH(σ′

1,σ
′
2) ∈ J ′(δ)

}
(49)

T4 ≜
{
Q ∈ S ′ : dH(σ1,σ2) ∈ J (δ) and dH(σ′

1,σ
′
2) ∈ J (δ)

}
(50)

where J ′(δ) and J (δ) appear, respectively, in (45) and (44).
Note that Ti, i = 0, . . . , 4 partition the set of all quadruples
that we investigate, i.e., S. Furthermore, (43) yields

E
[
U

2

γ∗,ϵ

]
=

4∑
i=0

∑
Q∈Ti

P
[
σ1,σ2 ∈ F(Ξ, c),σ′

1,σ
′
2 ∈ F(Ξ′, c′)

]
.

(51)
In what follows, we essentially show that the dominant con-
tribution comes from T4. To that end, we first study T0.∑

Q∈T0

P
[
σ1,σ2 ∈ F(Ξ, c),σ′

1,σ
′
2 ∈ F(Ξ′, c′)

]
= 4

∑
σ1,σ

′
1

dH(σ1,σ
′
1)=n(γ∗+ϵ)

P
[
σ1 ∈ F(Ξ, c),σ′

1 ∈ F(Ξ′, c′)
]

= 4E[Uγ∗,ϵ] ≤ E[Uγ∗,ϵ]
2e−Θ(n), (52)

where the last step uses (39). We next study T1 (and T2, from
symmetry). Notice that

|T1| ≤ 2 · 2n
(

n

n(γ∗ + ϵ)

)2

, (53)

since there are 2n choices for σ1, 2 choices for σ2 (having
fixed σ1) and at most

(
n

n(γ∗+ϵ)

)2
for (σ′

1,σ
′
2). Next, fix any

Q ∈ T1. Note that

max
Q∈T1

P
[
σ1,σ2 ∈ F(Ξ, c),σ′

1,σ
′
2 ∈ F(Ξ′, c′)

]
≤ P[σ1 ∈ F(Ξ, c)] max

σ′
1 ̸=±σ′

2

P
[
σ′

1,σ
′
2 ∈ F(Ξ′, c′)

]
(54)

≤
(
2

π

) 3d
2

2−∥c∥1n ·O(n
d
2 )2−2∥c′∥1n(1 + on(1)) (55)

where (54) uses σ1 = ±σ2, and (55) is obtained by combin-
ing (36) and Lemma 3 together with the fact σ′

1 ̸= ±σ′
2 so

that 1
n |⟨σ

′
1,σ

′
2⟩| ≤ 1− 1

n . Thus,∑
Q∈T1

P
[
σ1,σ2 ∈ F(Ξ, c),σ′

1,σ
′
2 ∈ F(Ξ′, c′)

]
≤ 2n

(
n

n(γ∗ + ϵ)

)2 (
2

π

) 3d
2

2−∥c∥1−2∥c′∥n ·O(n
d
2 )(1 + on(1))

(56)

≤ E
[
U

2

γ∗,ϵ

]
exp2

(
−n+ n∥c∥1 +O(log n)

)
(57)

where (56) follows by combining (53) and (55), and (57)
follows by recalling (38). As ∥c∥1 < 1 by assumption, we
thus conclude∑

Q∈T1

P
[
σ1,σ2 ∈ F(Ξ, c),σ′

1,σ
′
2 ∈ F(Ξ′, c′)

]
≤ E

[
U

2

γ∗,ϵ

]
e−Θ(n). (58)

A similar reasoning also yields∑
Q∈T2

P
[
σ1,σ2 ∈ F(Ξ, c),σ′

1,σ
′
2 ∈ F(Ξ′, c′)

]
≤ E

[
U

2

γ∗,ϵ

]
e−Θ(n). (59)

We now focus on the sum over T3 per (49). We first upper
bound the cardinality of T3. Recall J ′(δ) from (45). Note that
there are 2n choices for σ1, and having fixed a σ1, there are

∑
k∈J ′(δ)

(
n

k

)
≤ exp2

(
nh

(
1− δ

2

))
(60)

choices for σ2, where we used Lemma 2(b). Having fixed σ1

and σ2, there are at most(
n

n(γ∗ + ϵ)

)2

(61)

choices for (σ′
1,σ

′
2) subject to dH(σ1,σ

′
1) = dH(σ2,σ

′
2) =

n(γ∗ + ϵ). Combining (60) and (61), we thus obtain

|T3| ≤ 2 · exp2
(
n+ nh

(
1− δ

2

))(
n

n(γ∗ + ϵ)

)2

, (62)

where the extra factor follows by repeating the same calcu-
lation for those quadruples with (σ′

1,σ
′
2) ∈ J ′(δ). We next

control the probability term.

max
Q∈T3

P
[
σ1,σ2 ∈ F(Ξ, c),σ′

1,σ
′
2 ∈ F(Ξ′, c′)

]
≤ max

σ1 ̸=±σ2

P
[
σ1,σ2 ∈ F(Ξ, c)

]
max

σ′
1 ̸=±σ′

2

P
[
σ′

1,σ
′
2 ∈ F(Ξ′, c′)

]
(63)

≤
(
2

π

)2d

O(nd) · 2−2n(∥c∥1+∥c′∥1) ·
(
1 + on(1)

)
, (64)



where (63) uses the fact Ξ and Ξ′ are independent and (64)
follows by using Lemma 3 and using identical reasoning
outlined after (55) above. Combining (62) and (64), we obtain∑
Q∈T3

P
[
σ1,σ2 ∈ F(Ξ, c),σ′

1,σ
′
2 ∈ F(Ξ′, c′)

]
≤

(
n

n(γ∗ + ϵ)

)2

×

exp2

(
n

(
1 + h

(
1− δ

2

)
− ∥c∥1 − ∥c′∥1

)
+O(log n)

)
,

(65)

using the fact d = O(1). Using (38), we thus conclude that∑
Q∈T3

P
[
σ1,σ2 ∈ F(Ξ, c),σ′

1,σ
′
2 ∈ F(Ξ′, c′)

]
≤ E

[
U

2

γ∗,ϵ

]
e−Θ(n). (66)

We lastly study T4 in (50) and show that the quadruples
from this set brings the dominant contribution to the second
moment. We first bound

|T4| ≤ 22n
(

n

n(γ∗ + ϵ)

)2

, (67)

where there are 2n choices for σ1 and 2n choices for σ2;
having fixed σ1,σ2, there are

(
n

n(γ∗+ϵ)

)
choices for each of

σ′
1 and σ′

2. This bound is crude, but suffices for our purposes.
We next fix

Q = (σ1,σ
′
1,σ2,σ

′
2) ∈ T4.

Using T4 from (50) as well as the set J (δ) per (44), we have

dH(σ1,σ2), dH(σ′
1,σ

′
2) ∈

[
n(1− δ)

2
,
n(1 + δ)

2

]
.

Since 1
n ⟨σ1,σ2⟩ = 1

n (n− 2dH(σ1,σ2)), we obtain

1

n
⟨σ1,σ2⟩ ∈ [−δ, δ] and

1

n
⟨σ′

1,σ
′
2⟩ ∈ [−δ, δ]. (68)

Next, observe by using Lemma 3 and (68) that

max
Q∈T4

P
[
σ1,σ2 ∈ F(Ξ, c),σ′

1,σ
′
2 ∈ F(Ξ′, c′)

]
≤ max

Q∈T4

(
P
[
σ1,σ2 ∈ F(Ξ, c)]P

[
σ′

1,σ
′
2 ∈ F(Ξ′, c′)

])
≤

(
2

π

)2d (
1− δ2

)−d
2−2n(∥c∥1+∥c′∥1)

(
1 + on(1)

)
. (69)

Combining (67) and (69), we arrive at∑
Q∈T4

P
[
σ1,σ2 ∈ F(Ξ, c),σ′

1,σ
′
2 ∈ F(Ξ′, c′)

]
≤

(
2

π

)2d (
1− δ2

)−d
(

n

n(γ∗ + ϵ)

)2

(1 + on(1))

× exp2
(
2n

(
1− ∥c∥1 − ∥c′∥1

))
. (70)

Combining (70) with the expression for E
[
U

2

γ∗,ϵ

]
per (38), we

thus obtain∑
Q∈T4

P
[
σ1,σ2 ∈ F(Ξ, c),σ′

1,σ
′
2 ∈ F(Ξ′, c′)

]
≤ E

[
U

2

γ∗,ϵ

] (
1− δ2

)−d
(71)

We are now ready to conclude the proof of Proposition 1.
Observe that

E[Uγ∗,ϵ]
2

E[U2

γ∗,ϵ]
≥ 1

e−Θ(n) + (1− δ2)−d

by combining (51) with (52), (58), (59), (66) and (71). Sending
n → ∞ (while keeping δ > 0 a constant)

lim inf
n→∞

E[Uγ∗,ϵ]
2

E[U2

γ∗,ϵ]
≥

(
1− δ2

)d
. (72)

Since δ > 0 above is arbitrary and the left hand side is
independent of δ, we thus have, upon sending δ → 0, that

lim inf
n→∞

E[Uγ∗,ϵ]
2

E[U2

γ∗,ϵ]
≥ 1.

As
E[Uγ∗,ϵ]

2

E[U2

γ∗,ϵ]
≤ 1

trivially by Jensen’s inequality, we also have

lim sup
n→∞

E[Uγ∗,ϵ]
2

E[U2

γ∗,ϵ]
≤ 1,

and therefore

lim
n→∞

E[Uγ∗,ϵ]
2

E[U2

γ∗,ϵ]
= 1,

establishing Proposition 1.
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